Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Alston, Jesse (Ed.)The field of microbial ecology is increasingly recognizing the need for methods to isolate and culture gut microbes to better understand how these microorganisms impact animal physiology, especially in mammalian hosts. Currently, there is a lack of clear methods to store microbial samples for cultivability, especially when samples are collected from the field, transported to the laboratory, and preserved under long-term storage for weeks to months compared to mere days in the biomedical field. Here, the cecal contents of groundhogs (Marmota monax) were processed and stored with or without various preservation solutions at −80 °C for at least 2 months. All microbial samples were then grown in distinct nutrient media in liquid and plate conditions and were incubated under anaerobic and aerobic environments. Treatment comparisons revealed that the samples stored in preservation solutions containing 1 or more cryoprotectants provided the greatest and most consistent bacterial densities. To test the long-term storage efficacy of the preservation solutions, we inventoried taxonomic identities and abundances of these cultures using 16S rRNA amplicon sequencing. Our findings highlight that: (1) preserved samples containing cryoprotectants exhibited the highest microbial richness and diversity and resembled the original cecal samples the most when grown under anaerobic conditions; and (2) the effect of individual animal identity was detectable in the membership of cultured communities, irrespective of preservation solutions. Our study is the first to demonstrate the importance of preservation solutions containing multiple cryoprotectants for long-term storage and further microbial culturing and novel isolation. Understanding and improving storage methods that preserve microbial physiology and conserve their compositional diversity is essential for field-collected samples useful in mammalian microbiome and culturomics studies, promoting a better comprehension of the identity and function of wild host-associated microbiomes.more » « lessFree, publicly-accessible full text available January 21, 2026
-
Abstract The gut microbial communities of mammals provide numerous benefits to their hosts. However, given the recent development of the microbiome field, we still lack a thorough understanding of the variety of ecological and evolutionary factors that structure these communities across species. Metabarcoding is a powerful technique that allows for multiple microbial ecology questions to be investigated simultaneously. Here, we employed DNA metabarcoding techniques, predictive metagenomics, and culture-dependent techniques to inventory the gut microbial communities of several species of rodent collected from the same environment that employ different natural feeding strategies [granivorous pocket mice (Chaetodipus penicillatus); granivorous kangaroo rats (Dipodomys merriami); herbivorous woodrats (Neotoma albigula); omnivorous cactus mice (Peromyscus eremicus); and insectivorous grasshopper mice (Onychomys torridus)]. Of particular interest were shifts in gut microbial communities in rodent species with herbivorous and insectivorous diets, given the high amounts of indigestible fibers and chitinous exoskeleton in these diets, respectively. We found that herbivorous woodrats harbored the greatest microbial diversity. Granivorous pocket mice and kangaroo rats had the highest abundances of the genus Ruminococcus and highest predicted abundances of genes related to the digestion of fiber, representing potential adaptations in these species to the fiber content of seeds and the limitations to digestion given their small body size. Insectivorous grasshopper mice exhibited the greatest inter-individual variation in the membership of their microbiomes, and also exhibited the highest predicted abundances of chitin-degrading genes. Culture-based approaches identified 178 microbial isolates (primarily Bacillus and Enterococcus), with some capable of degrading cellulose and chitin. We observed several instances of strain-level diversity in these metabolic capabilities across isolates, somewhat highlighting the limitations and hidden diversity underlying DNA metabarcoding techniques. However, these methods offer power in allowing the investigation of several questions concurrently, thus enhancing our understanding of gut microbial ecology.more » « less
An official website of the United States government
